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Exposure of DNA to various forms of oxidative stress results
in its structural alteration. The effects of the lesions produced on
the structure of DNA and their interaction with repair and
polymerase enzymes have important consequences in aging and
in the etiology of diseases, including cancer and neurodegenerative
diseases such as Cockayne syndrome and xeroderma pigmento-
sum.1 The formamidopyrimidine lesions (e.g. Fapy‚dG) are
produced from the purine nucleotides in DNA due to the effects
of ionizing irradiation and agents that produce reactive oxygen
species.2,3 Under O2 limiting conditions the yield of Fapy‚dG
formed viaγ-radiolysis is greater than that of the well-studied
lesion, OxodG.2a An indication that Fapy‚dG formation is
biologically significant is its excision by the base excision repair
enzyme that bears its name, formamidopyrimidine glycosylase
(fpg, mutM).4 Furthermore, there is evidence that related mol-
ecules MeFapy‚dG and Fapy‚dA adversely affect DNA poly-
merase activity.5,6 However, examination of the effects of Fapy‚dG
on DNA structure and function is limited by the inability to
prepare nucleic acids containing this lesion at a defined site. We
wish to report the first synthesis of oligonucleotides containing
Fapy‚dG.

DNA containingN-methylformamidopyrimidines (e.g. MeFapy‚
dG) has been prepared via random methylation by dimethyl
sulfate, followed by alkaline hydrolysis.5a Recently, a chemo-
enzymatic method for preparing DNA containing MeFapy‚dG at

a defined site was reported.7 These methods are not applicable
to the synthesis of DNA containing the parent Fapy‚dG. Conse-
quently, studies on Fapy‚dG are limited to DNA in which it and
other lesions are produced via photolysis,γ-radiolysis, or radio-
mimetic methods.2-6

Solid-phase oligonucleotide synthesis is extremely useful for
providing oligonucleotides containing DNA lesions that are useful
in physicochemical and biological studies.8-11 However, the
chemical properties of Fapy‚dG presented unique challenges for
oligonucleotide synthesis. The greatest anticipated hurdle for the
successful synthesis of oligonucleotides containing Fapy‚dG was
the facile epimerization ofN-(2-deoxy-R,â-D-erythro-pento-
furanosyl)formamidopyrimidine nucleosides and their rearrange-
ment to pyranose isomers, a process that cannot occur when the
lesion is produced within a biopolymer.12 Facile epimerization
of formamidopyrimidines obviated the need for stereoselective
synthesis of oligonucleotides containingR- or â-Fapy‚dG.
Consequently, we adopted a synthetic strategy that was uncon-
cerned with stereochemistry at the anomeric center, but avoided
exposing the primary hydroxyl group of the sugar in the presence
of the formamidopyrimidine. For oligonucleotide synthesis this
required incorporating Fapy‚dG as part of a dinucleotide phos-
phoramidite (1).13

The nitro group also served to accelerate nucleophilic aromatic
substitution by the requisite 2-deoxyribosylamine, which was
prepared from the triacetate (3) and used crude (Scheme 1).15

The dimethoxytrityl group was used to protect the C3-hydroxyl
because we wanted to unmask the primary hydroxyl under
nonacidic conditions in order to reduce the likelihood that6
rearranges and minimize protecting group manipulations later in
the synthesis. This required that we synthesize the oligonucleotides
in the 5′f3′ direction using reverse phosphoramidites.16 Since
Fapy nucleosides epimerize in water, it was not necessary to
separate anomers following glycosylation.12 But the anomers of
6 were separated following protection of theN2-amino group and
desilylation, to facilitate characterization. Neither anomer of6
rearranged to the pyranose isomer, indicating that the electron
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withdrawing nitro group inhibited the ability of the N6 nitrogen
to stabilize the acyclic intermediate necessary for rearrangement
and epimerization (Scheme 2).

Dinucleotide couplings were carried out by using single
diastereomers of6 for characterization purposes (Scheme 3).
However, for large-scale synthesis anomeric mixtures of6 were
employed. TheO-methyl phosphoramidite (7) was employed
because the alternativeâ-cyanoethyl group was unstable to
subsequent transformations. Formylation of theN5-amino group
obtained upon reduction of the nitro group (8) produced9 as a
mixture of diastereomers and formamide rotamers. Diastereomeric
products differing at the anomeric center of Fapy‚dG (â:R ) 2:1)
were separated from one another.17 Desilylation of theâ-anomer
of 9 yielded a mixture of dinucleotides epimeric at the Fapy‚dG
anomeric center (â:R ) 1.7:1).17 The major isomer assigned as
theâ-Fapy‚dG dinucleotide was carried on to1 by using standard
phosphitylation methods.11

Oligonucleotides (10, 11) were prepared by using1 and reverse
â-cyanoethyl phosphoramidites containing “fast-deprotecting”

groups on the exocyclic amines of dA, dC, and dG.11 Native
nucleotide phosphoramidites (0.05 M) were coupled by using
automated synthesis cycles comparable to those previously
reported for reverse phosphoramidites,16 but 1 (0.05 M) required
double-coupling for extended times (30 min/coupling) to achieve
a 70% yield. Unreacted hydroxyl groups on the growing oligo-
nucleotide were capped by using trimethylacetic anhydride/lutidine
instead of acetic anhydride to guard against transamidation of
deoxyguanosine and deformylation of Fapy‚dG.18 Deprotection
was carried out in two steps. Demethylation of the phosphate

triester introduced along with1 was achieved with disodium
2-carbamoyl-2-cyanoethylene-1,1-dithiolate trihydrate (0.2 M, 20
min).19 The remainder of the protecting groups were removed
and the oligonucleotide cleaved from the support by using
anhydrous K2CO3 (0.05 M)/MeOH (4 h). Denaturing polyacryl-
amide gel electrophoresis (PAGE) purified oligonucleotides (10,
11) exhibited the expected molecular weight by ESI-MS and
showed no evidence for deformylation, dehydration, or deglyco-
sylation of Fapy‚dG.20 Due to the modest coupling yield of1, a
36mer (12) was prepared enzymatically from10 on a 5 nmol
scale.21 Oligonucleotides10 and 13 were 5′-phosphorylated by
using polynucleotide T4 kinase and then hybridized along with
14 to a DNA template (15). Following incubation with T4 DNA
ligase,12 was purified by PAGE and analyzed by MALDI-TOF
MS.20 The 36mer was characterized further by reacting 5′-32P-12
hybridized to its complement with fpg protein (200 nM).
Quantitative cleavage within 5 min provided additional evidence
that none of the Fapy‚dG underwent dehydration to form dG
during any of the synthesis or purification procedures.20

In summary, we have developed chemical and enzymatic
methods for synthesizing oligonucleotides containing Fapy‚dG
at a defined site. These biopolymers will facilitate elucidation of
the physical, chemical, and biological effects of this lesion.
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Scheme 1a

a Key: (a) TMSN3, TMSOTf, CH2Cl2. (b) NaOMe, MeOH. (c)
TBDMSCl, pyridine. (d) DMTCl, pyridine. (e) H2, Pd/CaCO3, EtOH. (f)
2, diisopropylethylamine, EtOH. (g) PhOCH2CO2H, PyBOP, CH2Cl2. (h)
Bu4N+ F-, AcOH, THF.

Scheme 2

Scheme 3a

a Key: (a) â-6, tetrazole, then t-BuOOH. (b) H2, Pd/C, MeOH. (c)
HC(O)OAc, pyridine, THF. (d) Bu4N+ F-, AcOH, THF. (e) 2-cyanoethyl
phosphoramidic chloride, diisopropylethylamine, CH2Cl2.
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